Predicting spatio-temporal variability in fire return intervals using a topographic roughness index
نویسندگان
چکیده
The shapes of landscapes are fundamental to ecosystem processes at various spatial scales. Topographic roughness index (TRI) is a measure of variability in the landscape surface and a proxy of the potential of disturbances to propagate across the earth’s surface, such as a wildland fire burning across a landscape. We describe the significance of TRI, present methods for calculation, and demonstrate the utility of the index in a fire frequency prediction model. The model was used to show how the relationships between topography, fire, and humans changed during the period of AD 1620–1850 for a study area (5180 km) in Missouri, USA. The model predicted historic mean fire return intervals from TRI and two human population variables. The model explained 46% of the variation in mean fire return intervals and demonstrated that topographic roughness was most important in controlling fire frequency during the period AD 1620–1780 when human population density was lowest (<0.35 humans/km). Due to increases in human population, mean fire return intervals were shortened by up to one-fourth of their original length and the landscape became more homogeneous with respect to fire frequency despite topographic roughness. The use of TRIs in wildland fire research aid in quantifying and visualizing topographic variability and could be applicable to multiple scales and ecosystem processes. # 2007 Elsevier B.V. All rights reserved. www.elsevier.com/locate/foreco Available online at www.sciencedirect.com Forest Ecology and Management 254 (2008) 463–473
منابع مشابه
Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملInterictal EEG as a physiological adaptation. Part II. Topographic variability of composition of brain oscillations in interictal EEG.
OBJECTIVE In the present experimental study, we examined topographic variability of composition of brain oscillations and their temporal behavior in frequencies from 0.5 to 30 Hz of interictal EEG without epileptiform abnormalities and healthy EEG. METHODS Spatio-temporal variability of brain oscillations (indexed by short-term EEG spectral patterns (SPs)) was assessed by the probability-clas...
متن کاملTemporal Variations of Fire Effects on Dissolved Nutrient Concentrations and Runoff amount in Zrebar Lake Watershed
Fire causes destructive effects on soil, water and components of wetland ecosystems. The aim of this study was to investigate the effects of fire on runoff amount and nutrient concentration of Zrebar Lake watershed between 2014 and 2017 and the return of burned areas to their natural conditions in the short, medium and long term. The results showed that in the fourth year after the fire, the am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008